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Abstract
We carry out a theoretical analysis of quantum well electron dynamics in a
parallel magnetic field of arbitrary strength, for a narrow quantum well. An
explicit analytical closed-form solution is obtained for the retarded Green’s
function for Landau-quantized electrons in skipping states of motion between
the narrow well walls, effectively involving in-plane translational motion,
and hybridized with the zero-field lowest subband energy eigenstate. The
dispersion relation for electron eigenstates is examined, and we find a plethora
of such discrete Landau-quantized modes coupled to the subband state. In
the weak field limit, we determine low magnetic field corrections to the
lowest subband state energy associated with close-packing (phase averaging)
of the Landau levels in the skipping states. At higher fields the discrete
energy levels of the well lie between adjacent Landau levels, but they are
not equally spaced, albeit undamped. Furthermore, we also examine the
associated thermodynamic Green’s function for Landau-quantized electrons
in a thin quantum well in a parallel magnetic field and construct the
(grand) thermodynamic potential (logarithm of the grand partition function)
determining the statistical thermodynamics of the system.

1. Introduction

The frontier of semiconductor device technology research is focused on the nanostructure
length scale, including quantum wells, wires and dots. On this scale, quantum dynamics yields
a host of fascinating and technologically significant new physical phenomena and the field is
further enriched by the application of a magnetic field. In particular, recent experiments by
Peralta and Allen [1] on the photoconductivity of a double-quantum-well field-effect transistor
subject to terahertz irradiation in a parallel magnetic field have shown that the response is
strongly dependent on the strength of the magnetic field. The role of a normal magnetic field
in quantum well electron dynamics has been explored exhaustively [2]. Substantial work has
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also been done on the case of a parallel magnetic field [2–11] and the present paper is intended
to provide further theoretical insight into the problem as there is a resurgence of experimental
interest [1, 12]. To examine this matter more fully, we carry out in this paper a theoretical
analysis of electron dynamics in a thin quantum well modelled by a delta function potential
profile, U(z) = U0δ(z), in a parallel magnetic field, taking full account of Landau quantization
of orbits. In this, we obtain a closed form analytical solution for the appropriate retarded
Green’s function G(r, r′; t − t ′) for the parallel field case, both within the quantum well as
well as outside the quantum well, along with useful analytic representations. Furthermore, we
construct the associated single-particle thermodynamic Green’s function and derive the (grand)
thermodynamic potential (logarithm of the grand partition function), determining the statistical
thermodynamics of the thin quantum well in a parallel magnetic field.

2. Green’s functions in a magnetic field for bulk and with a thin (parallel) quantum well

In the absence of a quantum well the bulk infinite-space retarded Green’s function in a magnetic
field H = H ŷ has the form [13, 14],

G∞(r, r′; t − t ′) = C(r, r′)G∞(|r − r′|; t − t ′; H ), (1)

where the Peierls phase factor (dropping extraneous gauge phase factors)

C(r, r′) = exp[i(e/2)r · H × r′] (2)

is not translationally invariant due to nonconservation of the momentum direction in a magnetic
field. The detailed structure of G∞ (for infinite space) was long ago determined explicitly in
closed form in direct-time representation in terms of elementary functions which generate the
Landau eigenfunction series when Fourier transformed to an energy–frequency representation.
The retarded bulk function G∞(|r − r′|; t − t ′; H ) is translationally invariant and can be
Fourier transformed in all coordinate-difference variables to single momenta x − x ′ → px ,
y − y ′ → py (we leave z − z ′ in position representation). The spectral weight function for
G∞(px, py, |z − z ′|; T ) (T = t − t ′) is defined as

A∞(px, py, |z − z ′|; T ) = i[Gξ,τ
∞>(px, py, |z − z′|; T ) − Gξ,τ

∞<(px, py, |z − z ′|; T )]
(Gξ,τ

∞{≶} refer to the bulk thermodynamic Green’s function at chemical potential ξ and

temperature τ ; greater, >, and lesser, <, parts), and it is given in direct time representation
by [13, 14]

A∞(px, py, |z − z ′|; T ) = e−iµ0 Hσ3T
∫ ∞

−∞
dpz

2π
eipz(z−z′)

× e−ip2
y T/2m

cos(ωcT/2)
exp

[
−i

p2
x + p2

z

mωc
tan(ωcT/2)

]
, (3)

(suppressing C(r, r′); σ3 is the Pauli spin matrix, µ0 is the Bohr magneton and ωc is the Landau
level separation (h̄ → 1)). For the energy spectrum of the narrow quantum well, we will need
the retarded infinite-space G∞-function with z = z ′ = 0, given by (�+(T ) is the Heaviside
unit step function)

G∞(px, py, |0 − 0|; T ) = −i�+(T )A∞(px, py, |0 − 0|; T ). (4)

Carrying out the pz-integral of equation (3) and Fourier transforming to frequency
representation, T → ω, we obtain

G∞(px, py, |0 − 0|; ω) = −1 + i

2

√
mωc

2π

∫ ∞

0
dT eiT (ω−p2

y)/2m
√

cot(ωcT/2)
e−iµ0 Hσ3T

cos(ωcT/2)

× exp

[
− ip2

x

mωc
tan

(
ωcT

2

)]
. (5)
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The Dyson integral equation for the Green’s function in the presence of a quantum well,
U(r) (1 = r1, t1, etc),

G(1, 2) = G∞(1, 2) +
∫

d3 G∞(1, 3)U(3)G(3, 2), (6)

is complicated by the Peierls phase factor C(r, r′) in G∞(1, 3). Nevertheless, holding C(r, r′)
intact, we have solved this integral equation exactly analytically in closed form for a thin one-
dimensional δ(z)-function potential profile for a quantum well, U(z) = U0δ(z), centred at
z = 0 in frequency–energy representation. As the magnetic field is taken to be in the ŷ-
direction, equation (6) takes the form (α ≡ e/2, and we Fourier transform y − y ′ → py and
t − t ′ → ω)

G(x, z; py; x ′, z′; ω) = eiαH (xz′−x′ z)G∞(|x − x ′|; py; |z − z′|; ω) + U0

∫
dx̃ e−iαH zx̃

× G∞(|x − x̃ |; py; |z − 0|; ω)G(x̃, 0; py; x ′, z′; ω).

The solution of this integral equation requires knowledge of G(x̃, 0; py; x ′, z′; ω) on the right-
hand side, so we set z → 0 on the left:

G(x, 0; py; x ′, z′; ω) = eiαH xz′G∞(|x − x ′|; py; |0 − z′|; ω)

+ U0

∫
dx̃ G∞(|x − x̃ |; py; |0 − 0|; ω)G(x̃, 0; py; x ′, z′; ω),

and can now solve algebraically by Fourier transforming x → px , obtaining

G(px, 0; x ′, z′; py; ω) = eiαH x′z′
e−ipx x′G∞(px − αH z′, py; |0 − z ′|; ω)

× [
1 − U0G∞(px, py; |0 − 0|; ω)

]−1
.

Substituting this result on the right-hand side of the integral equation above, we obtain an
explicit closed-form solution for the Green’s function for electrons in a thin quantum well with
a parallel magnetic field as

G(r, r′; ω) = G∞(r, r′; ω) + U0ei(eH/2)(x′z′−xz)
∫ ∞

−∞
dpx

2π

∫ ∞

−∞
dpy

2π
eipx (x−x′ )eipy(y−y′)

× G∞(px − eH z/2, py; |z − 0|; ω)G∞
(

px − eH z ′/2, py; |0 − z ′|; ω
)

× [1 − U0G∞(px, py; |0 − 0|; ω)]−1. (7)

Our retention of the Peierls phase factor C(r, r′) (equation (2)) in this analysis is responsible
for the shifting of the px -variable (px → px − eH z/2; px → px − eH z ′/2) in equation (7).
Of course, equation (7) also bears the full complement of Landau quantization effects in G∞. It
should be noted that the Green’s function of equation (7) and associated eigenfunctions extend
off the plane z = 0, notwithstanding the δ-function confinement potential of the well.

3. Eigenenergy dispersion relation

The dispersion relation for the electron energy eigenstates of the narrow quantum well in a
parallel magnetic field is given by the vanishing of the denominator term on the right of
equation (7) (in examining the energy spectrum, we execute the spin trace taking Zeeman
splitting equal to Landau level separation for illustrative purposes; in this case spin shifts the
energy levels by h̄ωc/2):

1

U0
= G∞

(
px, py; |0 − 0|; ω

)
, (8)
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in which we can employ G∞ given by equation (5) modified by the spin trace. In the absence
of a magnetic field, equation (5) yields

G∞
(

px, py; |0 − 0|; ω
) = −√

2m

[
θ(ε − ω)√

ε − ω
+ i

θ(ω − ε)√
ω − ε

]
,

where ε = (p2
x + p2

y)/2m and m is effective mass, and h̄ → 1. Consequently, there is just one
stable subband state for electron motion across the quantum well given by

ω → E0 = p2
x + p2

y

2m
− 2mU 2

0 , (9)

provided that U0 < 0 and 2mω < (p2
x + p2

y) (including in-plane translational energy and, of
course, there is a continuum of states for motion above the barriers confining the well).

To examine the effects of a low magnetic field we expand the right-hand side of
equation (5) in powers of the field to order ω2

c , obtaining

G∞
(

px, py; |0 − 0|; ω
) = −

√
i2m

π

∫ ∞

0
dT

ei(ω−ε)T

√
T

×
[

1 − ω2
c T 2

24
+ · · ·

] [
1 − iω2

c p2
x T 3

24m
+ · · ·

]
,

whence we find

G∞
(

px, py; |0 − 0|; ω
) = −

√
2m

|ε − ω|7/2

{
�(ε − ω)

[
(ε − ω)3 + ω2

c

32

(
ε − ω + 5

p2
x

2m

)]

+ i�(ω − ε)

[
(ω − ε)3 + ω2

c

32

(
ω − ε − 5

p2
x

2m

)]}
. (10)

Correspondingly, the dispersion relation of equation (8) results in the seventh-order algebraic
equation,

η7 − η6 − aη2 − b = 0, (11)

with

η =
√

ε − ω

2mU 2
0

, a = ω2
c

128m2U 4
0

, b = 5ω2
c p2

x

512m4U 6
0

.

This equation has a unique real positive root provided that ε > ω with U0 < 0. The mode is
given to order ω2

c by

ω =
[

1 − 5

64

ω2
c

m2U 4
0

]
p2

x

2m
+ p2

y

2m
− ω2

c

32mU 2
0

− 2mU 2
0 . (12)

This single real eigenenergy root corresponds to the phase averaging/mixing of the closely
packed Landau eigenstates for ‘skipping’ electron motion between the narrow quantum well
walls admixed with the zero-field lowest subband state of the quantum well. The coefficient of
p2

x/2m includes a shift of order ω2
c which may be interpreted as a mass shift [8], and there is

also shift of order ω2
c in the subband level 2mU 2

0 . The absence of a subband level shift of order
ωc seems to be due to the symmetry of our δ(z)-potential confining the quantum well [10].

In analysing the full effects of Landau quantization using equations (5) and (8), one
must proceed with caution in addressing subtleties associated with the imaginary behaviour
of

√
cot(ωcT/2) over half the fundamental interval. To deal with this matter we decompose

the T -integration range of equation (5) into segments [ 2π
ωc

n, 2π
ωc

(n + 1)] (n = 0, 1, 2, . . .),
and translate all of them to the fundamental interval, which we then further subdivide into
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[0, π
ωc

] ∪ [ π
ωc

, 2π
ωc

]. To avoid ambiguity of branch choice of
√

cot(ωcT/2), we also transform

[ π
ωc

, 2π
ωc

] to [0, π
ωc

] using T → 2π
ωc

− T . This procedure yields

G∞
(

px, py; |0 − 0|; ω
) = −

√
2m

πωc
(1 + i) f (�, λ)

∞∑
n=0

ein�π, (13)

with

f (�, λ) =
∫ π

0
dt ei(�t−λ tan t)

√
cot t (14)

and

f (�, λ) =
∫ π/2

0

dt√
tan t

[
ei(�t−λ tan t) + iei�π e−i(�t−λ tan t)

]
, (15)

where we have set t = ωcT/2, λ = p2
x/mωc and � = 2(ω − p2

y/2m)ω−1
c . Furthermore, we

employ an identity that can be derived from Mehler’s formula [15] (see appendix A)

√
cot te−iλ tan t = eiπ/4e−λ

∞∑
n=0

Cne−2nit , (16)

where (Hn(x) are Hermite polynomials)

C0 = 1, Cn>0 = H 2
n (

√
λ) + 2nH 2

n−1(
√

λ)

22n! . (17)

Substituting equation (16) into equations (14) and (15), executing the T -integral, and summing
the geometric series of equation (13), we obtain

G∞
(

px, py; |0 − 0|; ω
) = 2

√
m

πωc
e−p2

x /mωc

[
s1 cot

(
π�

2

)
+ 2s2

]
, (18)

where

s1 =
∞∑

n=0

Cn
sin
[

π
2 (� − 2n)

]
� − 2n

, (19a)

s2 =
∞∑

n=0

Cn
sin2

[
π
4 (� − 2n)

]
� − 2n

. (19b)

Landau level spectral structure is evident in equation (18) with simple poles on the right-hand
side for ω = nωc + p2

y/2m. Considering the electron dispersion relation, equation (8), there is
a plethora of modes that mix discrete Landau level electron states for motion skipping between
the narrow quantum well walls (effectively involving in-plane translation) admixed with the
zero-field lowest subband energy eigenstate. They are discussed in section 5 and illustrated in
figures 1 and 2. Such modes are not uniformly spaced, but they do lie between each pair of
adjacent Landau levels, and are undamped. Similar results have been obtained by Merkt [7].

4. Statistical thermodynamics

In addressing the statistical thermodynamics of the quantum well, we consider the
thermodynamic potential, � (not to be confused with � employed in section 3 above,
equations (13)–(19); Boltzmann constant kB → 1):

� = F − ξ〈N〉 = −τ ln Tr e−(Hop−ξ N)/τ = −τW, (20)

where F is the free energy, N is the number operator, Hop is the Hamiltonian, τ is temperature,
ξ is the chemical potential and W is the grand potential (log of the grand partition function).
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Figure 1. Schematic solutions of equation (8) for several parameter values λ′ =
0, 0.1, 0.25, 0.5, 1.0 and magnetic field strength B = 2.5 T.
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Figure 2. Eigenenergy levels, solutions of equation (8) for several parameter values λ′ =
0, 0.25, 0.5 and 1.0, as functions of magnetic strength in tesla (log–log plot).

Noting that we can also write (εr are the single-particle energies) � = −τ
∑

r ln(1 + e(ξ−εr)/τ ),
we have

lim
ξ→−∞ �(ξ) = lim

ξ→−∞ W (ξ) = 0. (21)

The magnetic moment, M , may be obtained as

M = −
(

∂ F

∂ H

)
τ,V,N

= −
(

∂�

∂ H

)
τ,V,ξ

, (22)

and we will employ the last equality, understanding V as area for the quantum well and ξ to be
held constant as well as temperature, in the differentiation with respect to magnetic field, H .



Properties of electrons in a thin quantum well in a parallel magnetic field 2579

We evaluate � using the relation

〈N〉 = −
(

∂�

∂ξ

)
τfixed

, (23)

and integrating with respect to chemical potential (recall equation (21) and keep τ fixed):

� = −
∫ ξ

−∞
dξ ′ 〈N(ξ ′)〉 = i

∫ ξ

−∞
dξ ′

∫
d3r Gξ ′,τ

< (r, t; r, t). (24)

The last equation requires the ‘lesser’ part of the one-electron thermodynamic Green’s function
Gξ ′,τ

{≶}, which may be written in terms of its spectral weight A(r, r′; ω) (in position-frequency

representation) as

Gξ ′,τ
{≶}(r, r′; ω) = i

{
f0(ω)

−1 + f0(ω)

}
A(r, r′; ω), (25)

where f0(ω) is the Fermi–Dirac distribution function. Since the spectral weight relates to the
retarded Green’s function G(r, r′; ω) (obtained in equation (7)) as

A(r, r′; ω) = 2 Im G(r, r′; ω), (26)

we have (bear in mind r′ = r as well as t ′ = t)

� = −2
∫ ξ

−∞
dξ ′

∫ ∞

−∞
d3r

∫ ∞

−∞
dω

2π
f0(ω) Im G(r, r; ω). (27)

The involvement of spin in the Dyson equation (6) is readily separated as G(T ) ∼ e−iµ0 Hσ3T ,
just as for G∞(T ), and it cancels across the equation since U is independent of spin in
these considerations. Correspondingly, we can view the solution of equation (7) as applicable
to the spin-independent part of the retarded Green’s function, in which the role of C(r, r′)
(equation (2)) is subsumed in the wavenumber shifts of px (px → px − eH z/2; px →
px − eH z′/2). (Note that while we could employ spin-traced Green’s functions in determining
the energy spectrum shifted by h̄ωc/2 above, it would be incorrect to continue the use of the
spin-traced functions here. Hence, we account for spin separately at the outset as described
above.)

Employing equation (7) with r′ = r, we have

GQW(r, r; ω) ≡ G(r, r; ω) − G∞(r, r; ω)

= U0

∫ ∞

−∞
dpx

2π

∫ ∞

−∞
dpy

2π
G∞

(
px − eH z/2, py; |z|; ω

)

× G∞
(

px − eH z/2, py; |z|; ω
) [

1 − U0G∞
(

px, py; |0 − 0|; ω
)]−1

, (28)

where we identify the contribution of the quantum well by subtracting G∞, which will just
yield known bulk results. Without the spin factor, we have

G∞(px, py, |z − z ′|; T ) = −i�+(T )A∞(px, py, |z − z′|; T )

= − i�+(T )

∫ ∞

−∞
dpz

2π
eipz(z−z′) e−ip2

y T/2m

cos(ωcT/2)
exp

[
−i

p2
x + p2

z

mωc
tan(ωcT/2)

]
. (29)

In this first examination of statistical thermodynamics of the thin quantum well in a magnetic
field, we address the case of low field, devoid of de Haas–van Alphen Landau quantization
phenomenology, h̄ωc < 2mU 2

0 < ξ , setting cos(ωcT/2) → 1 and tan(ωcT/2) → ωcT/2.
Consequently (δ is a positive infinitesimal),

G∞(px, py, |z − z ′|; ω) = −i
∫ ∞

0
dt
∫ ∞

−∞
dpz

2π
eiωT eipz(z−z′) exp

(
−i

p2
x + p2

y + p2
z

2m
T

)

=
∫ ∞

−∞
dpz

2π

eipz(z−z′)

ω + iδ − (p2
x + p2

y + p2
z )/2m

. (30)
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Substitution of equation (30) into equation (28) and setting kx = px − eH z/2 yields:

GQW(r, r; ω) = U0

∫ ∞

−∞
dkx

2π

∫ ∞

−∞
dpy

2π



∫ ∞

−∞
dpz

2π

eipz z

ω + iδ − k2
x +p2

y+p2
z

2m




2

×

1 − U0

∫ ∞

−∞
dqz

2π

1

ω + iδ − (kx +eH z/2)2+p2
y+q2

z

2m




−1

. (31)

Forming the position-space integral required in equation (27) and introducing the notation
ω̃ = ω/ξ and (kx , py, pz) = pF(k, p, q), where pF = √

2mξ , we can also write (a is the
lateral area of the quantum well):∫

d3r Im GQW(r, r; ω) = U0a
p4

F

ξ 2

∫ ∞

−∞
dk

2π

∫ ∞

−∞
dp

2π

× Im
∫ ∞

−∞
dz

[∫ ∞

−∞
dq

2π

eiqpFz

ω̃ + iδ − (k2 + p2 + q2)

]2

×
{

1 − U0 pF

ξ

∫ ∞

−∞
dq ′

2π

1

ω̃ + iδ − [(k + eH z
2 pF

)2 + p2 + q ′2]

}−1

. (32)

Addressing the zero-field limit (H → 0), it is convenient to execute the z-integral first,
and then the q- and q ′-integrals, with the result (see appendix B)∫

d3r Im GQW(r, r; ω) = −U0ap3
F

8ξ 2

∫ ∞

0

dr

2π

× Re

{
(ω̃ − r + iδ)−1

[
i
U0 pF

2ξ
+ (ω̃ − r + iδ)1/2

]−1
}

. (33)

Focusing attention on the degenerate case,∫ ξ

−∞
dξ ′ f0(ω) = �+(ξ − ω)(ξ − ω), (34)

and equation (27) then yields the part of � associated with the quantum well, �QW, as (set
x ≡ 1 − (ω̃ − r) and y ≡ (1 − ω̃)2)

�0
QW = U0ap3

F

32π2

∫ ∞

0
dy
∫ ∞

y1/2
dx Re[(1 − x + iδ)(is + √

1 − x)]−1, (35)

in the zero-field limit, �QW → �0
QW. Here, we have defined s = U0 pF/2ξ . The last factor of

the x-integrand yields a real contribution only for x < 1, leading to the integral

I =
∫ ∞

0
dy
∫ 1

y1/2

dx Re
−is + √

1 − x

(1 − x)(s2 + 1 − x)
, (36)

which may be evaluated as (see appendix B) [16]

I = 8

s

∫ 1

0
dt (t − t3) arctan

(
t

s

)
= 8

s

[
3s2

4
arctan

(
1

s

)
−
(

7s

12
− s3

4

)
− 1

4
arctan s + π

8

]
.

(37)

The last term in equation (37), π/s, leads to a contribution to �QW which fails to vanish as
U0 → 0. This would be problematic, except for the fact that we have not yet accounted
for a contribution from the Dirac prescription applied to the first factor of the integrand of
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equation (33), namely −iπδ(ω̃ − r), which just cancels the nonvanishing term. Thus, the zero
magnetic field limit, �0

QW, is given in the degenerate case by

�0
QW = ap2

Fξ

2π2

[
3s2

4
arctan

(
1

s

)
−
(

7s

12
− s3

4

)
− 1

4
arctan s

]
. (38)

Considering finite magnetic field at zero temperature, we again employ equation (32) and
evaluate the q-integral as

∫ ∞

−∞
dq

eiqpFz

ω̃ + iδ − (k2 + p2 + q2)
= −i

exp{i√ω̃ − (k2 + p2)pF|z|}
2
√

ω̃ − (k2 + p2)
. (39)

Again employing equation (34) in the degenerate limit, the result for �QW given by
equation (27) may be expressed as (set β = eH/2p2

F = h̄ωc/4ξ ; γ = U0 pF/2ξ ; C =
U0ap3

F/4π ; x = pFz; all dimensionless)

�QW = C
∫ 1

0
dω̃(1 − ω̃)

∫ ∞

−∞
dk

2π

∫ ∞

−∞
dp

2π
Im
∫ ∞

−∞
dx

exp{2i
√

ω̃ − k2 − p2|x |}
ω̃ − k2 − p2

× 1

1 + iγ [ω̃ − (k + βx)2 − p2]−1/2
. (40)

Setting r̄ 2 = k2 + p2; k = r̄ cos θ , p = r̄ sin θ , and q̄ = ω̃ − r̄ 2, dq̄ = −d(r̄ 2), we have
an integral representation for the magnetic field dependence of the thermodynamic potential,
�QW, of the quantum well:

�QW = C

2(2π)2

∫ 1

0
dω̃(1 − ω̃)

∫ ω̃

−∞
dq̄
∫ 2π

0
dθ Im

∫ ∞

−∞
dx

exp{2iq̄1/2|x |}
q̄

× 1

1 + iγ [q̄ − 2βx
√

ω̃ − q̄ cos θ − β2x2]−1/2
. (41)

Albeit exact, the simpler appearance of equation (41) is somewhat deceptive since expansion
in powers of magnetic field (β) diverges term-by-term after the zero-field limit. Such magnetic
field power series divergencies are to be expected from a perusal of equation (32), since such an
expansion would involve the last integrand factor expanded in powers of eH z

2 pFk , and higher even
inverse powers of k lead to divergences (we explicitly verify this in appendix C). However,
higher odd powers of k indicate vanishing of the k-integral whose integrand is otherwise
even in k. This, too, is to be expected since odd powers of H should be expected to vanish
to accommodate the fact that this system cannot have an intrinsic magnetic moment, M , so
limH→0

∂�QW

∂ H = 0. Thus, the four-fold integral of equation (41) is an even function of H , and
is not analytic in H . Moreover, we have examined the magnetic susceptibility represented by
its second derivative with respect to magnetic field, and find that its limit as H → 0 does not
exist (see appendix C). Equation (41)—while correct—describes a highly singular function
that requires further study.

5. Discussion and conclusions

Our approach to the dynamics and statistical thermodynamics of a thin quantum well in a
parallel magnetic field has been a global one, in which the Green’s functions determined in
equations (7) and (28) provide explicit closed-form analytic results both inside the quantum
well and outside the quantum well. They incorporate both the localized states bound within
the well as well as the extended states above the potential walls enclosing the quantum
well, concisely representing all the eigenstates (and eigenenergies) in terms of bulk functions
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expressed as integrals of elementary functions. This feature offers tractability in the result
which we have employed in our determination of the (grand) thermodynamic potential and
magnetic response of the quantum well. Such tractability can also be advantageous in other
studies. While our model δ(z)-potential accommodates just one subband state in the absence
of a magnetic field, such a description has proven useful in a variety of applications in which
higher subbands are energetically inaccessible.

In regard to specific calculations, we have examined weak magnetic field corrections to
the lowest subband energy to order ω2

c , equation (12). These include an ω2
c -term proportional

to p2
x which may be interpreted in terms of an anisotropic mass shift, and there is also an ω2

c -
shift of the lowest subband energy. There is no subband energy shift of order ωc because of
the symmetry of our δ(z)-potential confining the quantum well. This result is applicable to the
mixing of closely packed Landau eigenstates for skipping electron motion between the narrow
quantum well walls admixed with the lowest subband state of the well.

For stronger magnetic fields

h̄ωc � 2mU 2
0

h̄2
, (42)

at which the discrete character of the parallel-field Landau levels is felt, the mixing of the
individual Landau level electron modes with skipping between the narrow quantum well walls
(effectively involving in-plane translation) admixed with the zero-field lowest subband state
results in many undamped eigenenergies that lie between each pair of adjacent Landau levels;
but they are not uniformly spaced. The dispersion relation for these modes and their behaviour
as functions of magnetic field (in terms of the variable � = 2�∗/ωc, with �∗ = ω − p2

y/2m)
are illustrated in figures 1 and 2, respectively. Our calculations are carried out for a narrow
GaAs–AlGaAs-based quantum well which we model by U(z) = U0δ(z), with the value of
U0 = ∫

dz U(z) based on a potential well wall height (above the well bottom) of 250 meV
and well width 10 nm, in a parallel magnetic field. The effective mass is m = 0.067 m0

and we take the 2D electron density in the quantum well as 1 × 1015 m−2, corresponding
to the zero-temperature Fermi energy, EF

∼= 7 meV. In figure 1 we plot the quantity
�(�) = [s1 cot(π�/2)+2s2] of equation (18) as a function of �, transposing the other factors
of G∞(px, py; |0 − 0|; ω) to the left-hand side of the dispersion relation of equation (8) which
is a constant independent of �. The Landau-quantized quantum well eigenenergies, h̄ω, occur
at the intersections of this constant, horizontal line (parallel to the horizontal axis of figure 1
and below it) with the plotted curves of �(�). These electron modes depend on px , and we
illustrate this with plots for several values of the parameter λ′ = p2

x/2m EF = 0, 0.1, 0.25, 0.5
and 1.0 for magnetic field strength B = 2.5 T. The multitude of modes comes about by
hybridization of each individual Landau state mixing with the lowest subband level that the
well has in the absence of the parallel magnetic field. These hybrid electron eigenstates of the
quantum well are clearly illustrated in figure 2, in which the roots are plotted in terms of �∗ as
functions of magnetic field for λ′ = 0, 0.25, 0.5 and 1.0.

Our analysis of the statistical thermodynamics of a thin quantum well has produced an
explicit analytic expression for its (grand) thermodynamic potential in a parallel magnetic field,
equation (27), as well as the thermodynamic Green’s function. We have employed this in an
exact determination of the thermodynamic potential of the quantum well, �QW, in the zero-field
degenerate limit in terms of elementary functions (equation (38)). In a similar analysis at finite
magnetic field we provide an integral representation of the magnetic field dependence of �QW

in equation (41).
These results may have interesting implications regarding the photoconductivity

experiments of [1] for high parallel magnetic fields. Furthermore, this work may serve to
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provide a field strength criterion for the uniqueness of the interacting levels of an emitter
quantum well coupled with the main quantum well of a double-barrier resonant quantum well
system (as proposed in [17, 18]), when subjected to a parallel magnetic field. Further work is
in progress to extend this analysis to multiple thin quantum wells in a parallel magnetic field.
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Appendix A. Identities

Mehler’s Formula is given by [15]

(1 − t2)−1/2 exp

(
2xyt − (x2 + y2)t2

1 − t2

)
=

∞∑
n=0

Hn(x)Hn(y)

22n! tn . (A.1)

Setting x = y and t = eiz (x � 0 and 0 � z � π ) we have

exp

(
2x2eiz

1 + eiz

)
=
√

1 − e2iz
∞∑

n=0

H 2
n (x)

22n! einz. (A.2)

Introducing the fact that

2eiz

1 + eiz
= 1 + i tan(z/2),

and multiplying both sides by e−x2
, it follows that

exp[ix2 tan(z/2)] =
√

1 − e2ize−x2
∞∑

n=0

H 2
n (x)

22n! einz. (A.3)

Finally, multiplying both sides by

√
cot(z/2) =

√
i(1 + eiz)

eiz − 1
,

we obtain

√
cot(z/2) exp[ix2 tan(z/2)] = e−iπ/4e−x2

(1 + eiz)

∞∑
n=0

H 2
n (x)

22n! einz . (A.4)

Equations (A.2) and (A.3) can also be rewritten in the form

e−ix2 cot t = (1 − e−4it )e−x2
∞∑

n=0

Dn(x)e−2int , (A.5)

where

Dn(x) = (−1)n H 2
n (x)

22n! . (A.6)
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Appendix B. Integrals

(1) z-integral and q- and q ′-integrals of equation (32) leading to (33):∫ ∞

−∞
dz

[∫ ∞

−∞
dq

2π

eiqpFz

ω̃ + iδ − (k2 + p2 + q2)

]2

=
∫ ∞

−∞
dq

2π

∫ ∞

−∞
dq̃

2π

∫ ∞

−∞
dz ei(q+q̃)pFz

× [ω̃ + iδ − (k2 + p2 + q2)]−1[ω̃ + iδ − (k2 + p2 + q̃2)]−1

=
∫ ∞

−∞
dq

2π

∫ ∞

−∞
dq̃

δ(q + q̃)

pF
[ω̃ + iδ − (k2 + p2 + q2)]−2

= 1

pF

∫ ∞

−∞
dq

2π

1

[ω̃ + iδ − (k2 + p2 + q2)]2
= −i

4pF
[ω̃ + iδ − (k2 + p2)]−3/2.

(B.1)

A similar evaluation of the last q ′-integral in the denominator factor of equation (32) yields the
zero-field limit in the form (r ≡ k2 + p2)∫

d3r Im GQW(r, r; ω) = U0ap3
F

4ξ 2

∫ ∞

−∞
dk

2π

∫ ∞

−∞
dp

2π

× Im

{
−i

[ω̃ + iδ − (k2 + p2)]3/2

[
1 + iU0 pF

2ξ

1

[ω̃ + iδ − (k2 + p2)]1/2

]−1
}

= −U0ap3
F

8ξ 2

∫ ∞

0

dr

2π
Re

{
(ω̃ − r + iδ)−1

[
i
U0 pF

2ξ
+ (ω̃ − r + iδ)1/2

]−1
}

.

(B.2)

(2) The integral I:

I =
∫ ∞

0
dy
∫ 1

y1/2
dx Re

−is + √
1 − x

(1 − x)(s2 + 1 − x)

=
∫ ∞

0
dy
∫ 1

y1/2

dx
1√

1 − x(s2 + 1 − x)
= 4

∫ ∞

0
du u

∫ √
1−u

0

dw

w2 + s2
, (B.3)

where u ≡ y1/2 and w ≡ (1 − x)1/2, and the upper limit of the u-integral is now seen to be
unity. The w-integral is readily evaluated [16], leading to

I = −4

s

∫ 1

0
du u

[
arctan

(
s√

1 − u

)
− π

2

]
, (B.4)

and setting t = √
1 − u and noting the identity arctan x + arctan 1/x = π/2, we have [16]

I = 8

s

∫ 1

0
dt (t − t3) arctan

(
t

s

)
= 8

s

[
3s2

4
arctan

(
1

s

)
−
(

7s

12
− s3

4

)
− 1

4
arctan s + π

8

]
.

(B.5)

Appendix C. �QW with finite magnetic field

Rewriting equation (40) with the definition k̄ = k + βx , we have

�QW = C
∫ 1

0
dω̃ (1 − ω̃)

∫ ∞

−∞
dk̄

2π

∫ ∞

−∞
dp

2π
Im
∫ ∞

−∞
dx

× exp{2i
√

ω̃ − (k̄ − βx)2 − p2|x |}
ω̃ − (k̄ − βx)2{1 + iγ [ω̃ − k̄2 − p2]−1/2} . (C.1)
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Expansion to second order in powers of β yields (ρ ≡ r 2 ≡ k̄2 + p2)

�QW = C

π
ξ 2
∫ 1

0
dω̃ (1 − ω̃)

∫ ω̃

0
dρ

1

(ω̃ − ρ)3/2 + γ 2(ω̃ − ρ)1/2

×
[

1 − β2

2(ω̃ − ρ)2
− 13β2

16

ρ

(ω̃ − ρ)3
+ O(β3)

]
, (C.2)

where we have executed the x-integral and the angular integral in the k̄–p plane. The β-
dependent terms are clearly divergent.

Furthermore, to examine the magnetic susceptibility directly, we form

∂2

∂β2

∫ ∞

−∞
dx

exp{2i
√

ω̃ − (k̄ − βx)2 − p2|x |}
ω̃ − (k̄ − βx)2 − p2

= −i
5k̄2 + 15/4

(ω̃ − k̄2 − p2)9/2
− i

5/4

(ω̃ − k̄2 − p2)7/2
. (C.3)

Correspondingly

lim
β→0

∂2�QW

∂β2
= − C

4π

∫ 1

0
dω̃ (1 − ω̃)

∫ ω̃

0
dz

1

ω̃ − z + γ 2

[
5z/2 + 15/4

(ω̃ − z)7/2
+ 5/4

(ω̃ − z)5/2

]
,

(C.4)

and this limit also does not exist, reflecting the highly singular behaviour of �QW as a function
of magnetic field.
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